Podstawy i Metody Oceny Środowiska Pracy - archiwum online

 
Streszczenia roczników
2019 - 2001
Wybierz rocznikWybierz numer


PODSTAWY I METODY OCENY ŚRODOWISKA PRACY

PIMOŚP - NUMER 2 (88) 2016




Narażenie na hałas o częstotliwości 10 ÷ 40 kHz na stanowiskach pracy zgrzewarek ultradźwiękowych – techniczne sposoby ograniczenia narażenia
Bożena Smagowska

W artykule przedstawiono wyniki narażenia na hałas o częstotliwości 10 ÷ 40 kHz na wybranych stanowiskach pracy zgrzewarek ultradźwiękowych. W przypadku dwóch stanowisk pracy zamieszczono przykłady ograniczenia  emisji hałasu ultradźwiękowego przez zastosowanie rozwiązań technicznych.
Zastosowanie obudowy w jednej zgrzewarce oraz uszczelnienie istniejącej obudowy w drugiej zgrzewarce ograniczyło emisję hałasu ultradźwiękowego na stanowiskach obsługi, a tym samym zmniejszyło narażenie pracowników na ten czynnik szkodliwy.



Związki chromu(VI) – w przeliczeniu na Cr(VI). Dokumentacja proponowanych dopuszczalnych wielkości narażenia zawodowego
Jolanta Skowroń, Katarzyna Konieczko

Związki chromu(VI) to grupa substancji zawierających chrom sześciowartościowy, czyli na +6 stopniu utlenienia. Związki chromu(VI) są środkami silnie utleniającymi. W środowisku naturalnym związki chromu(VI) łatwo ulegają redukcji przez materię organiczną do związków Cr(III), (chrom na +3 stopniu utlenienia). Związki chromu(VI) uwolnione do środowiska ze źródeł antropogenicznych mogą zalegać w wodzie lub glebie, gdzie znajdują się niewielkie ilości materii organicznej.
Związki chromu(VI) znalazły zastosowanie głównie w: powlekaniu metali (chromowaniu), produkcji barwników, inhibitorów korozji, materiałów ogniotrwałych, garbników, różnych syntezach chemicznych oraz w produkcji środków konserwujących drewno.
Ludzie mogą być narażeni na związki Cr(VI) przez: wodę do picia, kontakt z glebą lub innymi mediami zanieczyszczonymi tymi związkami, a w środowisku pracy drogami: inhalacyjną, pokarmową i przez skórę.
Powtarzający się kontakt pyłów Cr(VI) ze skórą może być przyczyną wypryskowego zapalenia skóry z obrzękiem. Kontakt skóry z roztworami wodnymi chromianów(VI) może być przyczyną powstania uszkodzeń, znanych jako dziury chromowe lub owrzodzenia chromowe, powstających głównie w miejscach, gdzie naskórek jest uszkodzony. Zmiany te występują głównie na: palcach, kostkach dłoni oraz przedramionach. Charakterystyczne dziury chromowe powstają wskutek gromadzenia grudek Cr(VI) wokół owrzodzenia. Owrzodzenia mogą wnikać głęboko w tkanki miękkie lub stać się miejscami wtórnego zakażenia, ale nie są przyczyną nowotworów skóry. Aerozole związków chromu(VI) mogą działać drażniąco na spojówki oczu, powodować owrzodzenie nosa i perforację przegrody nosowej oraz zapalenia dziąseł i przyzębia. Przy narażeniu drogą inhalacyjną związki Cr(VI) mogą być przyczyną uczulenia dróg oddechowych (astmy). Na podstawie wyników niektórych badań wykazano, że długotrwałe narażenie na małe dawki/stężenia związków Cr(VI) może być przyczyną odwracalnego uszkodzenia kanalików nerkowych oraz zaburzenia czynności wątroby. Niektóre z tych związków, np. dichromian(VI) potasu czy tritlenek chromu, działają żrąco lub drażniąco na błony śluzowe układu pokarmowego. Połknięcie dużej dawki chromianów(VI) może być przyczyną zapaści sercowo-naczyniowej i zgonu. Związki Cr(VI) przy przyjęciu drogą doustną (pokarmową) działają na układ krwiotwórczy lub powodują zmiany w morfologii krwi.
Długotrwałe zawodowe narażenie na związki Cr(VI) zwiększa ryzyko wystąpienia raka: płuc, jamy nosowej i zatok. Okres latencji wystąpienia raka płuc u pracowników narażonych zawodowo na związki Cr(VI) wynosi około 20 lat.
Międzynarodowa Organizacja Badań nad Rakiem (IARC, International Agency for Research on Cancer) zaliczyła związki Cr(VI) do grupy 1. czynników rakotwórczych dla ludzi, gdyż istnieje wystarczający dowód rakotwórczości tych związków u ludzi. Również Unia Europejska (UE), Agencja Ochrony  Środowiska (EPA, Environmental Protection Agency) i Światowa Organizacja Zdrowia (WHO, World Health Organization)  zaliczyły związki chromu(VI) do rakotwórczych dla ludzi.
Związki Cr(VI) w badaniach w warunkach in vitro oraz in vivo powodowały: uszkodzenia DNA, mutację genów, zaburzenia częstości wymian chromatyd siostrzanych oraz aberracje chromosomowe.
W Polsce, w latach 2005-2012, na podstawie informacji przesłanych do Centralnego Rejestru Danych o Narażeniu na Substancje, Preparaty, Czynniki lub Procesy Technologiczne o Działaniu Rakotwórczym lub Mutagennym prowadzonego przez IMP w Łodzi, najbardziej powszechnie był stosowany dichromian(VI) potasu. W ostatnich dwóch latach związek ten zgłaszało rocznie około 400 zakładów pracy, a liczba osób narażonych przekraczała 4 tysiące. Ponad tysiąc narażonych osób zgłoszono również w przypadkach: tlenku chromu(VI), chromianu(VI) potasu oraz innych związków chromu(VI) nieujętych we wspomnianym  wykazie substancji. Zdecydowaną większość zgłoszonych do rejestru stanowisk pracy, na których występują związki chromu(VI), stanowiły stanowiska laboratoryjne (w latach 2011-2012 ponad 75%). Ponad 10% stanowiły stanowiska pracy związane z galwanizacją lub trawieniem powierzchni, a około 4% stanowiska spawaczy.
W 2011 r. przekroczenie wartości najwyższego dopuszczalnego stężenia (NDS) chromianów(VI) i dichromianów(VI) zgłosiło do rejestru 11 zakładów pracy. Ponadnormatywne stężenia odnotowano na 12 stanowiskach pracy, na których było narażonych łącznie 60 osób. Na 7 stanowiskach związanych z galwanizacją było zatrudnionych łącznie 17 osób, a stężenia chromu wynosiły 0,11 ÷ 0,96 mg/m³. Na 2 stanowiskach pracy spawaczy (12 osób narażonych) stężenie wynosiło 0,22 i 0,27 mg/m³, a 14 osób było zatrudnionych na stanowisku pracy związanym z produkcją farb zawierających pigmenty chromowe, na którym stężenie chromu wynosiło 0,21 mg/m³, 12 osób było zatrudnionych w oczyszczalni ścieków – zmierzone stężenie chromu wynosiło 0,21 mg/m³, a 1 zgłoszona osoba pracowała na stanowisku laboratoryjnym, na którym stężenie chromu wynosiło 0,18 mg/m3. W zakładach pracy objętych nadzorem GIS w latach 2008-2012 nie stwierdzono ponadnormatywnych stężeń chromianów(VI) i dichromianów(VI).
Za skutek krytyczny działania związków Cr(VI) przyjęto działanie rakotwórcze na płuca. Za podstawę ustalenia wartości NDS przyjęto ocenę ryzyka wzrostu liczby przypadków raka płuca w grupie 1000 pracowników zawodowo narażonych na związki chromu(VI) przez cały czas pracy zawodowej i obserwowanych do 85. roku życia. Zaproponowano przyjęcie wartości NDS dla związków chromu(VI) – w przeliczeniu na Cr(VI) – wynoszącej 0,01 mg Cr(VI)/m3, przy której liczba dodatkowych przypadków raka płuca wyniesie 1 ÷ 6 na 1000 osób zatrudnionych w tych warunkach przez cały okres aktywności zawodowej. Na podstawie proponowanych w różnych opracowaniach szacunków ryzyka działania rakotwórczego związków chromu(VI) nie jest możliwe rozróżnienie między związkami chromu(VI) rozpuszczalnymi bardzo słabo, słabo  czy nierozpuszczalnymi. Jednak na podstawie dostępnych dowodów, choć niekompletnych, można wywnioskować, że słabo rozpuszczalne związki Cr(VI) powodują mniejsze ryzyko nowotworów płuc, choć rozmiaru tego ograniczenia nie można określić ilościowo.
Zaproponowana wartość NDS 0,01 mg Cr(VI)/m³ zabezpieczy pracowników również przed działaniem drażniącym związków chromu(VI) obecnych w powietrzu środowiska pracy, w związku z czym nie ustalono wartości najwyższego dopuszczalnego stężenia chwilowego  (NDSCh).
Zrezygnowano również z ustalenia wartości dopuszczalnego stężenia w materiale biologicznym (DSB). Dotychczasowa wartość DSB dotyczyła jedynie ograniczonego narażenia na związki chromu(VI) rozpuszczalne w wodzie, występujące w dymach, i nie była wskaźnikiem uniwersalnym.
Zaproponowane normatywy zastąpią obowiązujące wartości stężeń dla substancji ujętych obecnie w pozycjach „chromiany(VI) i dichromiany(VI)” oraz „chlorek chromylu”.  
Proponuje się następujące oznakowanie związków chromu(VI): Carc , Muta3, Repro. (Ft)3, C(r-r)3, I3 i A3.
Ze względu na działanie rakotwórcze związków chromu(VI) w SCOEL (Scientific Committee on Occupational Exposure Limit Values) nie ustalono wartości OEL (occupational exposure limit), tylko dokonano oceny ryzyka wystąpienia raka płuc u pracowników zawodowo narażonych na związki Cr(VI) na podstawie zbiorczych danych. W Komitecie Doradczym ds. Bezpieczeństwa i Zdrowia w Miejscu Pracy UE (ACSH, Advisory Committee on Health and Safety at Work)  została wstępnie przyjęta propozycja wartości wiążącej (BOELV, binding occupational exposure limit value) dla chromu(VI) na poziomie 0,025 mg/m3. W uzasadnieniu podano, że jest to wartość wyjściowa do zmniejszania wartości dopuszczalnej dla Cr(VI) do poziomu 0,001 ÷ 0,01 mg/m³.
Przyjęcie w UE wartości wiążącej dla chromu(VI) na poziomie 0,025 mg/m³ jest nadal związane z dużym ryzkiem wystąpienia u pracowników choroby nowotworowej. Na podstawie dokumentacji SCOEL/SUM/86/2004 narażenie na Cr(VI) o stężeniu 0,025 mg/m³ jest związane z podwyższonym ryzykiem wystąpienia raka płuc u od 2 do 14 pracowników na 1000 zawodowo narażonych na związki chromu(VI). Aby zmniejszyć ryzyko do 4 dodatkowych przypadków raka płuc na 1000 pracowników, narażenie na Cr(VI) powinno być ograniczone do stężenia 0,001 ÷ 0,01 mg/mg/m³.



Cyna i jej związki nieorganiczne. Oznaczanie w powietrzu na stanowiskach pracy
Jolanta Surgiewicz

Cyna w temperaturze pokojowej jest miękkim, srebrzystoszarym metalem. W przemyśle cyna jest stosowana jako składnik stopów: łożyskowych, lutowniczych i odlewniczych oraz do wytwarzania powłok ochronnych naczyń cynowych i amalgamatów.
Związki cyny są toksyczne. Wynikiem narażenia na cynę może być niekolagenowa pylica płuc – określana nazwą cynicy. Cyna i jej związki powodują podrażnienia skórne i przewlekłe zapalenie spojówek. Związki cyny kumulują się w organizmie. Wartość najwyższego dopuszczalnego stężenia (NDS) dla  cyny i jej związków nieorganicznych została ustalona na poziomie 2 mg/m³.
Celem pracy było opracowanie metody oznaczania stężeń cyny i jej związków nieorganicznych w powietrzu na stanowiskach pracy w zakresie od 1/10 do 2 wartości NDS zgodnie z wymaganiami zawartymi w normie europejskiej PN-EN 482:2012E. Opracowana metoda zastąpi metodę oznaczania cyny opisaną w normie PN-Z-04229-03:1996.
Opracowana metoda oznaczania cyny i jej związków nieorganicznych polega na: pobraniu cyny i jej związków zawartych w powietrzu na filtr membranowy, mineralizacji filtra z zastosowaniem stężonego kwasu solnego i azotowego oraz oznaczaniu cyny w roztworze przygotowanym do analizy metodą płomieniową absorpcyjnej spektrometrii atomowej (AAS).
Uzyskana krzywa kalibracyjna cyny w zakresie stężeń 5,00 - 120,0 g/ml charakteryzuje się wysoką wartością współczynnika korelacji (R2 = 1,0000) oraz odpowiada zakresowi stężeń 0,17 - 4,17 mg/m³ cyny i jej związków w powietrzu dla próbki powietrza o objętości 720 l. Średnia wartość współczynnika wydajności mineralizacji wynosi 1,00.
Metoda oznaczania cyny i jej związków nieorganicznych pozwala na oznaczanie najmniejszej ilości cyny i jej związków w powietrzu na stanowiskach pracy na poziomie 0,17 mg/m³. Charakteryzuje się dobrą dokładnością i precyzją, a także spełnia wymagania stawiane procedurom stosowanym do oznaczania czynników chemicznych w celu przeprowadzania oceny narażenia zawodowego.
Opracowana metoda oznaczania cyny i jej związków nieorganicznych została zapisana w postaci procedury analitycznej, którą zamieszczono w załączniku.



Eter oktabromodifenylowy – mieszanina izomerów. Oznaczanie w powietrzu środowiska pracy metodą chromatografii gazowej ze spektrometrią mas
Małgorzata Kucharska, Wiktor Wesołowski

Eter oktabromodifenylowy (oktaBDE) w czystej postaci jest niepalnym białym lub prawie białym ciałem stałym o charakterystycznym zapachu. Związek otrzymuje się przez bromowanie eteru difenylowego. Eter oktabromodifenylowy należy do bromowanych związków aromatycznych stosowanych do zmniejszania palności. Najczęściej był stosowany przy produkcji syntetycznych polimerów wykorzystywanych w przemyśle: samochodowym, elektrycznym i elektronicznym. Ze względu na swoje właściwości fizykochemiczne eter oktabromodifenylowy zaliczono do, tzw. trwałych zanieczyszczeń organicznych, których produkcja i stosowanie są zabronione w Unii Europejskiej od 2004 r. W warunkach przemysłowych podstawowym źródłem narażenia na polibromowane etery difenylowe (PBDE) jest praca w spalarniach odpadów komunalnych oraz przy utylizacji sprzętu elektrycznego i elektronicznego. Najbardziej istotne znaczenie w toksycznym działaniu eteru oktabromodifenylowego mają zmiany czynnościowe w wątrobie i tarczycy, a po narażeniu inhalacyjnym także zmiany w układzie oddechowym. Eter oktabromodifenylowy nie wykazywał działania mutagennego i genotoksycznego. W Environmental Protection Agency (EPA) zaliczono eter oktabromodifenylowy do klasy D, czyli związków nieklasyfikowanych jako kancerogen dla ludzi.
Celem pracy było opracowanie i walidacja czułej metody oznaczania stężeń eterów oktabromodifenylowych w środowisku pracy w zakresie 1/10 ÷ 2 wartości  najwyższego dopuszczalnego stężenia (NDS), zgodnie z wymaganiami zawartymi w normie europejskiej PN-EN 482: 2012.
Badania wykonano techniką chromatografii gazowej przy zastosowaniu chromatografu gazowego agilent tchnologies 7890B ze spektrometrem mas 5977A (MSD) oraz dozownikiem z podziałem lub bez podziału, z automatycznym podajnikiem próbek i komputerem z programem sterowania i zbierania danych (Mass Hunter) oraz kapilarną kolumną analityczną ZB 5-HT inferno (30 m × 0,25 mm × 0,25 µm).
Metoda polega na: zatrzymaniu frakcji wdychalnej obecnego w badanym powietrzu aerozolu eterów oktabromodifenylowych na filtrze z włókna szklanego, ekstrakcji toluenem i analizie chromatograficznej otrzymanego roztworu przy zastosowaniu spektrometru mas. Wydajność odzysku oznaczanych związków przy zastosowaniu proponowanego zestawu do pobierania próbek powietrza wynosiła 95,7%. Tak pobrane próbki powietrza przechowywane w lodówce są trwałe co najmniej 30 dni. Zastosowanie kolumny ZB 5 HT inferno (30 m × 0,25 mm × 0,25 µm) umożliwia oddzielenie frakcji eteru oktabromodifenylowego od innych izomerów polibromowanych eterów difenylowych oraz rozpuszczalnika. Opracowana metoda jest liniowa (r = 0,999) w zakresie stężeń 1 ÷ 20 µg/ml, co odpowiada zakresowi 0,01 ÷ 0,2 mg/m³ dla próbki powietrza o objętości 200 l. Granica oznaczalności tej metody wynosi 0,365 µg/ml.
Metoda analityczna umożliwia selektywne oznaczenie frakcji wdychalnej eterów oktabromodifenylowych w powietrzu na stanowiskach pracy w zakresie stężeń 0,01 ÷ 0,2 mg/m³ (1/10 ÷ 2 wartości NDS). Opracowana metoda charakteryzuje się dobrą precyzją oraz dokładnością i spełnia wymagania zawarte w normie europejskiej PN-EN 482: 2012 dla procedur dotyczących oznaczania czynników chemicznych.
Opracowaną metodę oznaczania eterów oktabromodifenylowych,  zapisaną w postaci procedury analitycznej, zamieszczono w załączniku.



Tellur i jego związki. Metoda oznaczania w powietrzu na stanowiskach pracy
Jolanta Surgiewicz

W przemyśle tellur jest stosowany jako dodatek stopowy do: stali, stopów ołowiu, magnezu i miedzi.  Stosuje się go także do barwienia szkła i porcelany oraz jako katalizator reakcji chemicznych i dodatek do gumy.
Tellur działa szkodliwie na: drogi oddechowe, oczy i skórę. Ostre zatrucie tellurem powoduje uszkodzenie: wątroby, układu nerwowego i naczyniowo-sercowego. Przewlekłe narażenie na tellur wywołuje: senność, ból głowy, zaburzenia żołądkowo-jelitowe oraz alergiczne reakcje skórne. Tellur może także działać szkodliwie na płodność i na dziecko w łonie matki.
Wartości normatywów higienicznych dla telluru i jego związków w przeliczeniu na tellur wynoszą: najwyższe dopuszczalne stężenie (NDS) – 0,01 mg/m³ i najwyższe dopuszczalne stężenie chwilowe (NDSCh) – 0,03 mg/m³.
Celem pracy było opracowanie metody oznaczania stężeń telluru i jego związków w powietrzu na stanowiskach pracy zgodnie z wymaganiami zawartymi w normie europejskiej PN-EN 482:2012E.
Opracowana metoda oznaczania telluru i jego związków polega na: pobraniu telluru i jego związków (zawartych w powietrzu) na filtr membranowy, mineralizacji filtra z zastosowaniem stężonego kwasu azotowego oraz oznaczaniu telluru w roztworze przygotowanym do analizy metodą absorpcyjnej spektrometrii atomowej z elektrotermiczną atomizacją (ET-AAS).
Krzywa kalibracyjna telluru w zakresie stężeń 10,00 - 100,00 g/l charakteryzuje się współczynnikiem korelacji R2 = 0,9998 oraz odpowiada zakresowi stężeń 0,001 - 0,011 mg/m³ telluru i jego związków w powietrzu (dla próbki powietrza o objętości 720 l, objętości próbki 10 ml i krotności rozcieńczenia próbki k = 8). Średnia wartość współczynnika wydajności mineralizacji wynosiła 1,00.
Metoda oznaczania telluru i jego związków pozwala na oznaczanie najmniejszej ilości telluru i jego związków w powietrzu na stanowiskach pracy na poziomie 0,001 mg/m³. Charakteryzuje się dobrą dokładnością i precyzją, a także spełnia wymagania stawiane procedurom oznaczania czynników chemicznych stosowanych do oceny narażenia zawodowego.
Opracowana metoda oznaczania telluru i jego związków została zapisana w postaci procedury analitycznej, którą zamieszczono w załączniku.